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Abstract. In the present paper we study the dynamics of one-electron atoms in the presence of both a
linearly polarized squeezed vacuum and a magnetic field along the polarization vector of the photonic field.
We adopt the dipole approximation and approach the problem via path integral methods. After integrating
over the light variables for certain initial and final squeezed vacuum states we treat the path integral over
the spatial variables via Monte-Carlo methods. As an application we calculate the survival probability of
the ground state of a one-electron atom for various values of the magnetic field.

PACS. 03.65.Db Functional analytical methods – 31.15.Kb Path-integral methods

1 Introduction

Through time considerable effort has been made in ap-
plying path integral methods in quantum optics. Certain
dynamical groups have been studied [1,2] and the propa-
gators of particular forms of Hamiltonians describing non-
classical states have been obtained exactly [3,4]. Other
Hamiltonians can and have been investigated only numer-
ically via methods such as Monte-Carlo.

Additionally certain non-classical states have been
achieved in the laboratory. It is fifteen years that
quadrature-squeezed light has been produced experimen-
tally [5]. The interaction of non-classical light with matter
appears as a challenging area of research.

On the other hand there is a vast bibliography on the
effect of magnetic fields on matter and particularly atoms.
Hydrogen in a magnetic field is of particular interest in
classical, semi-classical and quantum dynamics [6,7].

Presently we are going to study the influence of
squeezed vacuum generated by a degenerate parametric
amplifier on an atomic bound state [8–10] in the presence
of a magnetic field via a formalism developed recently by
the author [11,12].

The paper proceeds in the following order. In Section 2
we describe the full Hamiltonian of an electron in the pres-
ence of a magnetic field, a non-classical field and a poten-
tial to be specified at will, we give the full propagator and
we integrate over the field variables. In Section 3 and as
an application we derive the survival probability of the
ground state of the atom by Monte-Carlo methods. Fi-
nally in Section 4 we give our conclusions.
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2 System Hamiltonian and path integration

The full Hamiltonian H can be written as the sum of
three terms: the electron Hamiltonian He, in the potential
V (r) and the magnetic field H, the squeezed field one Hf

and the interaction term HI between the electron and the
squeezed field

H = He +Hf +HI. (1)

Particularly the electron Hamiltonian is given as

He =
1
2

(
p− 1

c
A
)2

+ V (r) (2)

where

A =
1
2
H× r.

The Hamiltonian of squeezed light has the form

Hf(t) = ω(t)a+a+ f(t)a2 + f?(t)a+2. (3)

In the case of production of squeezed light by a degener-
ate parametric amplifier the squeezed light Hamiltonian
is given as

Hf(t) = ωa+a+ κ
(
e2iωta2 + e−2iωta+2

)
. (4)

Finally the interaction Hamiltonian in the length form is
given as

HI = −er ·Ef . (5)

The second quantized form of the field operator of
squeezed light is given as:

Ef(r) =
1√
V

il(ω)ε̂
[
aei(k·r−ωt) − a+e−i(k·r−ωt)

]
(6)
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where V is the quantization volume and l(ω) is a real
function of frequency given as l(ω) =

√
~ω/2ε0.

In the dipole approximation (eik·r ≈ 1) which we adopt
here, since the spatial dimension of the atom radiated is
much less than the wavelength of the electromagnetic field
the atom is in, the field operator can be written as

Ef =
1√
V

il(ω)ε̂
(
ae−iωt − a+eiωt

)
(7)

and HI takes the form:

HI = − 1√
V

iel(ω)ε̂ · r(t)
(
ae−iωt − a+eiωt

)
. (8)

Now we combine the terms (3) and (8) involving field vari-
ables in the term

H0(a+, a; t) = Hf +HI

= ωa+a+ f(t)a2 + f?(t)a+2 + g(t)a+ g?(t)a+ (9a)

where

g(t) = − 1√
V

iel(ω)ε̂ · r(t)e−iωt. (9b)

The propagator corresponding to (9a) has been derived
by Hillery and Zubairy. Here we use their result to obtain
the full propagator corresponding to H, with the field vari-
ables appearing in (9) integrated, thus resulting in a path
integral of only the spatial variables. It is given by the
expression

K(αf , rf ;αi, ri; t) =

r(t)=rfZ

r(0)=ri

Dr exp

2
666664

i
R t

0
dτ

h
ṙ2(τ)

2 − V (r(τ )) + H
2c (xẏ − yẋ)

i
−i

R t
0

dτ
�
2f(τ )X(τ ) + f(τ )Z2(τ ) + g(τ )Z(τ )

�
− 1

2

�
|αf |2 + |αi|2

�
+ Y (t)α?f αi +X(t) (α?f )2

−iα2
i

R t
0

dτf(τ )Y 2(τ ) + Z(t)α?f
−iαi

R t
0

dτ [g(τ ) + 2f(τ )Z(τ )]Y (τ )

3
777775

(10a)

whereX(t) satisfies the following Riccati differential equa-
tion

dX
dt

= −2iω(t)X − 4if(t)X2 − if?(t) (10b)

with initial condition X(0) = 0.
Y (t) and Z(t) are given as

Y (t) = exp
[
−i
∫ t

0

dτ [ω(τ) + 4f(τ)X(τ)]
]

(10c)

Z(t) =− i
∫ t

0

dτ [g?(τ) + 2g(τ)X(τ)]

× exp
[
−i
∫ t

τ

dτ ′ [ω(τ ′) + 4f(τ ′)X(τ ′)]
]
. (10d)

Now we consider the special case of the Hamiltonian (4),
describing squeezed light generated by a degenerate para-
metric amplifier, by setting

f(t) = κe2iωt. (11)

Then (9a) is written as

H0(a+, a; t) = Hf +HI

= ωa+a+ κe2iωta2 + κe−2iωta+2 + g(t)a+ g?(t)a+

(12)

and by using formulas (10) we obtain

X(t) =
1
2i

e−2iωttanh(2κt) (13)

Y (t) = e−iωtsech(2κt) (14)

Z(t) =
1√
V
el(ω)

∫ t

0

dτ ε̂ · r(τ)ζ(τ, t) (15)

where the function ζ(τ, t) in (15) is given as

ζ(τ, t) =
[
e2iωτ + ie−2iωτ tanh(2κτ)

]
× cosh(2κτ)e−iωtsech(2κt). (16)

The propagator (10a) with diagonal photonic field vari-
ables can be written as

K (α, rf ;α, ri; t) =

r(t)=rf∫
r(0)=ri

Dr exp

i
∫ t

0
dτ
[

ṙ2(τ)
2 − V (r(τ)) + H

2c (xẏ − yẋ)
]

− 1
2 ln cosh(2κt) + A−B|α|2 + C

2 α
?2

+C1
2 α

2 +D1α+Dα


(17)

where

D(t) =
1√
V
el(ω)

∫ t

0

dτ ε̂ · r(τ)ζ(τ, t) (18a)

D1 =− 1√
V
el(ω)

∫ t

0

dτ ε̂ · r(τ)
[
Y (τ)e−iωτ + iθ(τ, t)

]
(18b)

C1(t) =− i tanh(2κt) (18c)

C(t) =− ie−2iωt tanh(2κt) (18d)
B(t) = 1− Y (t) (18e)

A(t) =− 1
V
e2l2(ω)

∫ t

0

dτ
∫ τ

0

dρ ε̂ · r(τ)ε̂ · r(ρ)

×
[
ζ(ρ, τ)e−iωτ + iλ(t, τ, ρ)

]
. (18f)

θ(τ, t) and λ(t, τ, ρ) are given as

θ(τ, t) =
[
e2iωτ + ie−2iωτ tanh(2κτ)

]
cosh(2κτ)

× [tanh(2κt)− tanh(2κτ)] (18g)

λ(t, τ, ρ) =
[
e2iωτ + ie−2iωτ tanh(2κτ)

]
×
[
e2iωρ + ie−2iωρ tanh(2κρ)

]
cosh(2κτ)

× cosh(2κρ) [tanh(2κt)− tanh(2κρ)] . (18h)

Therefore we can integrate the diagonal propagator over
the field variable α between a final |0;µ, ν〉 and an ini-
tial |0;µ′, ν′〉 squeezed vacuum state of the field to obtain
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the following reduced propagator for the motion of the
electron

K̃(rf , ri; t) =
1√

µµ′N(t)

∫ r(t)=rf

r(0)=ri

Dr exp {iStot [r]}

=
1√

µµ′N(t)
K̃0(rf , ri; t) (19a)

where

Stot [r] =
∫ t

0

[
ṙ2(ρ)

2
− V (r(ρ)) +

H

2c
(xẏ − yẋ)

]
dρ

+
1
V
e2l2(ω)

∫ t

0

dρ
∫ ρ

0

dσ ε̂ · r(ρ)ε̂ · r(σ)φ(t, ρ, σ) (19b)

N(t) =

cosh(2κt)− 2e−iωt +
(

cosh(2κt)− i
ν

µ
sinh(2κt)

)
e−2iωt

− i
ν′

µ′
sinh(2κt)− νν′

µµ′
cosh(2κt) (19c)

φ(t, ρ, σ) = iζ(σ, ρ)e−iωρ − λ(t, ρ, σ)

+
i

K(t)


B(t)ζ(ρ, t)

[
Y (σ)e−iωσ + iθ(σ, t)

]
+B(t)ζ(σ, t)

[
Y (ρ)e−iωρ + iθ(ρ, t)

]
− [C1(t)− (ν/µ)] ζ(ρ, t)ζ(σ, t)
− [C(t)− (ν′/µ′)]

[
Y (ρ)e−iωρ + iθ(ρ, t)

]
×
[
Y (σ)e−iωσ + iθ(σ, t)

]


(19d)

and

K(t) = 1− 2e−iωtsech(2κt) +
(

1− i
ν

µ
tanh(2κt)

)
e−2iωt

− i
ν′

µ′
tanh(2κt)− νν′

µµ′
· (19e)

Now we perform the Markovian approximation in the La-
grangian of the above action by setting ε̂ · r(σ) equal to
its latest value. On performing this approximation we tac-
itly assume that the electron’s dynamic variables depend
only in their present value and no memory appears in the
interaction with the photonic field. The following integral
arises

ν(t, ρ) =
∫ ρ

0

φ(t, ρ, σ)dσ (20)

and finally the action (19b) becomes

Stot [r] =
∫ t

0

[
ṙ2(ρ)

2
− V (r(ρ)) +

H

2c
(xẏ − yẋ)

]
dρ

+
1
V
e2l2(ω)

∫ t

0

dρ (ε̂ · r(ρ))2
ν(t, ρ). (19b)

3 The Monte-Carlo method and application
to one-electron atoms

Now we apply the above theory to the case of one-electron
atoms in both a static magnetic field and squeezed vac-
uum.

In that case the potential in (2) is given as

V (r) = −Z
r
· (21)

We are going to use a Monte-Carlo approach. We proceed
in the following way.

In its discrete form the above path integral can be
written as

K̃0(rf , ri; t) =
1

√
2πiε

3 lim
N→∞

N∏
n=1

∫
drn√
2πiε

3 exp

{
i
N∑
n=1

Sn

}
(22)

where its measure in spherical coordinates can be writ-
ten as

1
√

2πiε
3

N∏
n=1

drn√
2πiε

3 =
1

√
2πiε

3

N∏
n=1

drn r2
n cosϑndϕn√

2πiε
3 ·

(23)

On supposing that we have directed the z-axis along the
direction of the linear polarization the exponential term
can be written as

eiSn =
∫ ∞
−∞

dwn δ(wn − rn cosϑn)eiSwn (24a)

where

Swn = ε

[
1

2ε2
(rn − rn−1)2 − V (rn)

+
H

2c

(
xn
yn − yn−1

ε
− yn

xn − xn−1

ε

)
+ νnw

2
n

]
· (24b)

By performing the transformation λn → (
√

2πω/
√
V )λn

we have transfer the missing factors in other terms in the
expression (31) of the propagator (see below).

Additionally the kinetic energy term can be ex-
pressed as

exp
{

i
2ε

(rn − rn−1)2

}
=

exp
{

i
2ε
(
r2
n + r2

n−1 − 2rnrn−1 cos∆ϑn
)}

. (25)

On using the following representation of the delta function

δ(wn − rn cosϑn) =
1

2π

∫ ∞
−∞

dλn e−iλnwneiλnrn cosϑn

=
1

2π

∞∑
ln=0

(2ln + 1)ilnPln(cosϑn)

×
∫ ∞
−∞

dλn e−iλnwnjln(λnrn) (26)
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K̃(rf , ri; t) =
1√
2πiε

N∏
n=1

[∫ ∞
0

drn cosϑndϕn√
2πiε

]N+1∏
n=1

[∫ ∞
−∞

dλn
2π

]

×
N+1∏
n=1



∞∑
pn=−∞

∞∑
l′n=0

∞∑
ln=0

ln∑
mn=−ln

√
2l′n + 1

√
4πil

′
n J̃ln+ 1

2

(rnrn−1

ε

)
jl′n

(√
2πωλnrn√

V

)
fn(λn)

×Yl′n0(ϑn, ϕn)Ylnmn(ϑn, ϕn) exp(ipn(ϕn − ϕn−1))Y ?lnmn(ϑn−1, ϕn−1)

×Jpn
(
H
2crnrn−1

)
exp

{
iε
[

1
2ε2

(rn − rn−1)2 − V (rn)
]}

 (31)

changing the order of integration between wn and λn using
the identity∫ ∞
−∞

dwn e−iλnwneενnw
2
n =

√
− π

ενn
exp

[
λ2
n

4ενn

]
= fn(λn)

(27)

as well as the expansions

eiz cos∆ϑn =
√

π

2z

∞∑
l=0

Jl+ 1
2
(z)il(2l + 1)Pl (cos∆ϑn)

(28)

eiz sinϕ =
∞∑

n=−∞
Jn(z)einϕ (29)

2l + 1
4π

Pl (cos∆ϑn) =
l∑

m=−l
Ylm (ϑn, ϕn)Y ?lm (ϑn−1, ϕn−1)

(30)

we obtain the following expression after certain manipu-
lations

see equation (31) above
where

J̃m(z) =
√
−2πizeizJm(z) (32)

and rN+1 = rf , r0 = ri.
On performing the angular integrations and keeping

leading terms in V we obtain the following expression

K̃(rf , ri; t) =
∞∑

p=−∞

∞∑
l=0

∞∑
k=0

k∑
m=−k

1
rfri

K̃plk(rf , ri; t)

× Yl0(ϑb, ϕb)Ykm(ϑb, ϕb) exp(ip(ϕb − ϕa))Y ?km(ϑa, ϕa).
(33)

For instance we have for N = 0

K̃plk(rf , ri; t) =
1√
2πiε

∫ ∞
−∞

dλ1

2π

√
2l+ 1

√
4πikJ̃k

(r0r1
ε

)
× jl

(√
2πωλ1r1√

V

)
f1(λ1)Jp

(
H

2c
r0r1

)
× exp

{
iε
[

1
2ε2

(r1 − r0)2 − V (r1)
]}
· (34)

The exponential represents a one-dimensional problem
and in the present case of the one-dimensional hydrogen-
like atom the following expression is valid

1√
2πiε

exp
{

i
[

1
2ε

(rn − rn−1)2 − εV (rn)
]}

=

〈
rn|e−iHε|rn−1

〉
=
Mmax∑
M=1

R?M (ρn)RM (ρn−1)e−iEMε (35)

where we have set

ρ = 2Zr/M (36)

and we have the expressions

EM =− Z2

2M2
(37)

RM(ρ) =
Z1/2

M3/2
ρe−ρ/2L(1)

M−1(ρ) (38)

where L(α)
n represents a generalized Laguerre polynomial.

The wave function of the ground state of the one elec-
tron atom is given as

|ψg(r)〉 = R10(r)Y00(r̂) (39)

where

R10(r) = 2Z3/2e−Zr. (40)

We have assumed to a first approximation that the exter-
nal fields do not disturb the wave function of the ground
state considerably.

Therefore the survival probability amplitude of the
ground state is given as

A(t) =
1√

µµ′N(t)

〈
R10(rf)|K̃000(rf , ri; t)|R10(ri)

〉
(41)

and the survival probability follows.
In Figure 1 we give the survival probability for the

ground state of the hydrogen atom as a function of time
and for various values of the magnetic field. We observe
that large values of the magnetic field assist transition to
other states.

Moreover we observe that population trapping in the
initial state occurs for various values of the magnetic field.
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Fig. 1. Survival probability of the ground state of the hy-
drogen atom in squeezed vacuum and a magnetic field. The
following parameters have been set: ν = 1.0, κ = 0.9 MHz,
ω = 0.4998 a.u., H = 1.0 a.u. (triangles) and 1000.0 a.u.
(circles).

4 Conclusions

At the present paper we investigate the dynamics of a one-
electron atom in the presence of both linearly polarized
squeezed vacuum and a magnetic field along the pho-
tonic field polarization. A degenerate parametric amplifier

could generate the squeezed vacuum for instance. We use
path integral methods and we treat all the terms on an
equal footing the only approximation performed, being
the Markovian approximation. We apply our methods to
the case of the dynamics of the ground state of a one-
electron atom. Our methods are tractable and we believe
that they give new aspects on the interaction of radiation
with matter in the presence of fields.
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